\(\int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx\) [287]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 191 \[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\frac {\sqrt {c} \sqrt {d} \sqrt {a+b x^2} \sqrt {1-\frac {d x^2}{c}} E\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {1+\frac {b x^2}{a}} \sqrt {-c+d x^2}}-\frac {\sqrt {c} (b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a+b x^2} \sqrt {-c+d x^2}} \]

[Out]

EllipticE(x*d^(1/2)/c^(1/2),(-b*c/a/d)^(1/2))*c^(1/2)*d^(1/2)*(b*x^2+a)^(1/2)*(1-d*x^2/c)^(1/2)/b/(1+b*x^2/a)^
(1/2)/(d*x^2-c)^(1/2)-(a*d+b*c)*EllipticF(x*d^(1/2)/c^(1/2),(-b*c/a/d)^(1/2))*c^(1/2)*(1+b*x^2/a)^(1/2)*(1-d*x
^2/c)^(1/2)/b/d^(1/2)/(b*x^2+a)^(1/2)/(d*x^2-c)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {434, 438, 437, 435, 432, 430} \[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\frac {\sqrt {c} \sqrt {d} \sqrt {a+b x^2} \sqrt {1-\frac {d x^2}{c}} E\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {\frac {b x^2}{a}+1} \sqrt {d x^2-c}}-\frac {\sqrt {c} \sqrt {\frac {b x^2}{a}+1} \sqrt {1-\frac {d x^2}{c}} (a d+b c) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a+b x^2} \sqrt {d x^2-c}} \]

[In]

Int[Sqrt[-c + d*x^2]/Sqrt[a + b*x^2],x]

[Out]

(Sqrt[c]*Sqrt[d]*Sqrt[a + b*x^2]*Sqrt[1 - (d*x^2)/c]*EllipticE[ArcSin[(Sqrt[d]*x)/Sqrt[c]], -((b*c)/(a*d))])/(
b*Sqrt[1 + (b*x^2)/a]*Sqrt[-c + d*x^2]) - (Sqrt[c]*(b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 - (d*x^2)/c]*Ellipti
cF[ArcSin[(Sqrt[d]*x)/Sqrt[c]], -((b*c)/(a*d))])/(b*Sqrt[d]*Sqrt[a + b*x^2]*Sqrt[-c + d*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 434

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 438

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]
, Int[Sqrt[a + b*x^2]/Sqrt[1 + (d/c)*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {d \int \frac {\sqrt {a+b x^2}}{\sqrt {-c+d x^2}} \, dx}{b}-\frac {(b c+a d) \int \frac {1}{\sqrt {a+b x^2} \sqrt {-c+d x^2}} \, dx}{b} \\ & = \frac {\left (d \sqrt {1-\frac {d x^2}{c}}\right ) \int \frac {\sqrt {a+b x^2}}{\sqrt {1-\frac {d x^2}{c}}} \, dx}{b \sqrt {-c+d x^2}}-\frac {\left ((b c+a d) \sqrt {1-\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {a+b x^2} \sqrt {1-\frac {d x^2}{c}}} \, dx}{b \sqrt {-c+d x^2}} \\ & = \frac {\left (d \sqrt {a+b x^2} \sqrt {1-\frac {d x^2}{c}}\right ) \int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-\frac {d x^2}{c}}} \, dx}{b \sqrt {1+\frac {b x^2}{a}} \sqrt {-c+d x^2}}-\frac {\left ((b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}}\right ) \int \frac {1}{\sqrt {1+\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}}} \, dx}{b \sqrt {a+b x^2} \sqrt {-c+d x^2}} \\ & = \frac {\sqrt {c} \sqrt {d} \sqrt {a+b x^2} \sqrt {1-\frac {d x^2}{c}} E\left (\sin ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {1+\frac {b x^2}{a}} \sqrt {-c+d x^2}}-\frac {\sqrt {c} (b c+a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1-\frac {d x^2}{c}} F\left (\sin ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {a+b x^2} \sqrt {-c+d x^2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.80 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.47 \[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\frac {\sqrt {\frac {a+b x^2}{a}} \sqrt {-c+d x^2} E\left (\arcsin \left (\sqrt {-\frac {b}{a}} x\right )|-\frac {a d}{b c}\right )}{\sqrt {-\frac {b}{a}} \sqrt {a+b x^2} \sqrt {\frac {c-d x^2}{c}}} \]

[In]

Integrate[Sqrt[-c + d*x^2]/Sqrt[a + b*x^2],x]

[Out]

(Sqrt[(a + b*x^2)/a]*Sqrt[-c + d*x^2]*EllipticE[ArcSin[Sqrt[-(b/a)]*x], -((a*d)/(b*c))])/(Sqrt[-(b/a)]*Sqrt[a
+ b*x^2]*Sqrt[(c - d*x^2)/c])

Maple [A] (verified)

Time = 2.45 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.56

method result size
default \(\frac {\sqrt {d \,x^{2}-c}\, \sqrt {b \,x^{2}+a}\, c \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {-d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-\frac {a d}{b c}}\right )}{\left (-b d \,x^{4}-a d \,x^{2}+c b \,x^{2}+a c \right ) \sqrt {-\frac {b}{a}}}\) \(107\)
elliptic \(\frac {\sqrt {-\left (b \,x^{2}+a \right ) \left (-d \,x^{2}+c \right )}\, \left (-\frac {c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1-\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}-c b \,x^{2}-a c}}+\frac {c \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1-\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1-\frac {a d -b c}{c b}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}-c b \,x^{2}-a c}}\right )}{\sqrt {b \,x^{2}+a}\, \sqrt {d \,x^{2}-c}}\) \(261\)

[In]

int((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

(d*x^2-c)^(1/2)*(b*x^2+a)^(1/2)*c*((b*x^2+a)/a)^(1/2)*((-d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(-a*d/b/c)
^(1/2))/(-b*d*x^4-a*d*x^2+b*c*x^2+a*c)/(-b/a)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.08 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.60 \[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\frac {\sqrt {b d} c x \sqrt {\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {\frac {c}{d}}}{x}\right )\,|\,-\frac {a d}{b c}) - \sqrt {b d} {\left (c - d\right )} x \sqrt {\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {\frac {c}{d}}}{x}\right )\,|\,-\frac {a d}{b c}) + \sqrt {b x^{2} + a} \sqrt {d x^{2} - c} d}{b d x} \]

[In]

integrate((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

(sqrt(b*d)*c*x*sqrt(c/d)*elliptic_e(arcsin(sqrt(c/d)/x), -a*d/(b*c)) - sqrt(b*d)*(c - d)*x*sqrt(c/d)*elliptic_
f(arcsin(sqrt(c/d)/x), -a*d/(b*c)) + sqrt(b*x^2 + a)*sqrt(d*x^2 - c)*d)/(b*d*x)

Sympy [F]

\[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {- c + d x^{2}}}{\sqrt {a + b x^{2}}}\, dx \]

[In]

integrate((d*x**2-c)**(1/2)/(b*x**2+a)**(1/2),x)

[Out]

Integral(sqrt(-c + d*x**2)/sqrt(a + b*x**2), x)

Maxima [F]

\[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int { \frac {\sqrt {d x^{2} - c}}{\sqrt {b x^{2} + a}} \,d x } \]

[In]

integrate((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 - c)/sqrt(b*x^2 + a), x)

Giac [F]

\[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int { \frac {\sqrt {d x^{2} - c}}{\sqrt {b x^{2} + a}} \,d x } \]

[In]

integrate((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^2 - c)/sqrt(b*x^2 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {-c+d x^2}}{\sqrt {a+b x^2}} \, dx=\int \frac {\sqrt {d\,x^2-c}}{\sqrt {b\,x^2+a}} \,d x \]

[In]

int((d*x^2 - c)^(1/2)/(a + b*x^2)^(1/2),x)

[Out]

int((d*x^2 - c)^(1/2)/(a + b*x^2)^(1/2), x)